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An improved method has been developed for computing a pore distribution curve from 
the nitrogen desorption isotherm at - 195’C based on the basic assumptions of Barrett, 
Joyner, and Halenda and Wheeler. Satisfactory agreement was obtained between surface 
areas computed by the present method and the BET equation. This work is part of a 
cooperative project between the Bureau of Mines and the Public Health Service, De- 
partment of Health, Education and Welfare, on the catalytic oxidation of automotive 
exhaust. 

Barrett, Joyner, and Halenda (2) (BJH) 
developed a method for estimating the 
distribution of pores in porous solids from 
the physical desorption isotherms for nitro 
gen at -195°C assuming that the pores 
approximate cylindrical shape. Their pro- 
cedure was based on the model proposed by 
Wheeler (5, 7) which is also the basis of the 
present work. 

In the BJH (2) and Wheeler (6) methods 
the calculations are laborious and probably 
only approximate. The present paper de- 
scribes a straightforward method of calculat- 
ing a cumulative pore distribution curve 
using standard mathematical methods. A 
differential pore distribution can be ob- 
tained by numerical differentiation. 

In desorption, when the pressure is de- 
creased from the saturation pressure to a 
relative pressure, 2, pores with radii larger 
than R desorb to leave an adsorbed layer of 

A NEW PROCEDURE FOR CALCULATING 
PORE DISTRIBUTIONS 

The volume of pores emptied, V, is a 
function of amount adsorbed, V,, and thick- 
ness of monolayer, t, i.e. V = f( Va, t). Then, 

dV = (av/aV,),dV, + (aV/at)v.dt (1) 

For cylindrical pores the terms in (4) may 
be evaluated as 

(aV/aV,), = R2/(R - t)“, 

and 

(aVa/at)v = 2 E [(R - t’)/R2]dV, 

thickness t on the pore walls. The quantity 
R - t, the Kelvin radius, is related to x by 

where t’ is the value of t at the lower limit 

the Kelvin equation, and thickness t as a 
of integration, and V, is the volume adsorbed 

function of x has usually been established at ’ = ” to give 
empirically for adsorption on nonporous 
materials. When the pressure is further de- dV = (j&2 
creased, smaller pores desorb and the thick- 
ness of the adsorbed layer decreases. The 
problem in computing a pore distribution 

[I -2-$/v;wdV]dVa (5) 

curve involves relating a differential amount which cannot be evaluated directly because 
desorbed dV, to the differential volume of V in the integral is not known. For most of 
pores emptied dV. the isotherm the second term within brackets 
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in (5) is substantially smaller than 1, and 
we may substitute the expression for dV of 
Eq. (5) into the integral of the same equa- 
tion. Performing this operation twice leads to 

clt s ” R - t’ dt 
+4z VE R2x 

In evaluating Eq. (6) we have used the 
value of t corresponding to R rather than the 
lower limit of the integral. This approxima- 
tion usually changes the values of the 
integrals by less than 1%. Usually the third 
term within the brackets is less than 15% 
of the second, and the fourth term pre- 
sumably falls off in the same manner. 

To integrate Eq. (6) numerically, the 
portion of the desorption isotherm from 
V, to V,,, is divided into 15 to 20 equidistant 
intervals of width h, the values of z are 
determined from the isotherm, and the 
corresponding values of R and t are read 
from graphs or tables. 

Equation 6 may be simplified by sub- 
stituting nh = 8, to give 

The term dt/dn is approximated by taking 
$ of the difference of the values of t one 
interval above and below the value of in- 

terest. The integral 2 0n’ J dn/(R - t) is 
evaluated numerically using the trapezoida- 
integration rule, and this quantity is multi1 
plied by dt/dn. The values of the third term 
are evaluated similarly using the values of 
the first integral determined previously. 

Equation 7 may now be integrated from 
VB to V, to give the volume of pores greater 
than R, V>R, 

12’ 
V>R = h ~ (R “_” t)” (G)dnJ (8) 

where G is the quantity within brackets in 
Eq. 7. Integration of Eq. 8 by the trapezoidal 
method is continued until V>R exceeds VP 
The surface area is evaluated from the 
equation A = 2 o J J” dV/R in the form 

.I 
?P 

A=2h ~ o (R ” t)2 (G)dn 

where nrr corresponds to the value of 
or R at which V,R = V,. Usually n” is not 
an integer and the value of A is obtained by 
trapezoidal integration to the intervals 
above and below V>R = V,, and A is 
estimated by linear interpolation. 

For evaluating integral (8) it is usually 
convenient to use the adsorption data in 
terms of cc (STP), but for integral (9) the 
actual volume of adsorbate must be used. 
Therefore, a constant multiplier of 1.546 
X 1O-3 h is used in the numerical integration. 

The accuracy of the value of (G) used in 
Eq. (8) may be tested by substituting the 
differential form of Eq. (8) into Eq. (5) to 
give 

(G’) = { 1 - 2 ; su’ y 

(R y t)” (G)l > dn (10) 

where (G’) is a better approximation of 
the quantity (G). Equation (10) is inte- 
grated by trapezoidal method. The term 
[R2/(R - t)“](G) in Eq. (10) has been eval- 
uated for integration of Eq. (8). The value 
of t corresponding to the lower limit of 
integration t’ should be used in Eq. (10). 
This check is usually unnecessary. 

EXAMPLES OF PORE DISTRIBUTION CURVES 

The new method was applied to the six 
nitrogen isotherms at - 195” shown in Fig. 1, 
where amount adsorbed is plotted as V,/V, 
to keep all of the isotherms on the same 
scale. Data for silica gel of BJH were read 
from the isotherm in ref. (Z), and the desorp- 
tion isotherm is shown as a broken curve in 
Fig. 1. For some of the other isotherms not 
enough desorption points are available to 
define the desorption curve accurately. 
Values of R and t of BJH (2) were used to 



52 

1.1 r 
R. B. ANDERSON 

.I 
L 

0 
I I I I 0.1 I I 0.2 1 I 

0.3 0.4 
I 

0.5 cs 0.7 08 09 
RELATIVE PRESSURE. x 

FIa. 1. Nitrogen isotherms at -195°C. The volume adsorbed V. has been divided by the volume 
adsorbed at x= 1, V,. 

construct graphs of R, R2/(R - t)“, and 
l/(R - t) as a function of Z. 

Figure 2 shows the cumulative pore 
volume curve for silica gel of BJH. The pore 
distribution curve was terminated at 425 c,c, 
corresponding to a pore radius of 8.2 A. 
The surface area was 806 m2/g, which is 
less than the BET area, 858 m”/g. 

Differential pore distribution curves were 
obtained by numerical differentiation of 
values of V>s read at equal intervals of pore 
radius by an adaptation of the Douglass- 
Avakian (1) method involving central dif- 
ferences. For some intervals the polynomial 
approximation was inadequate as indicated 
by the higher differences becoming very 
large. In these cases the derivative was ap- 
proximated by the first differences. The 

differential pore volume curves for the silica 
gel of BJH is presented in Fig. 2. The dif- 
ferential curve is essentially the same as that 
published by BJH. 

Cumulative and differential pore volume 
curves for the other isotherms in Fig. 1, 
each normalized by dividing by V,, are 
presented in Fig. 3. Table 1 provides the 
values of V,, and surface areas by the BET 
equation and the present method. Surface 
areas from Eq. 9 were approximately the 
same as areas from the BET equation. The 
average of the absolute values of the per- 
centage difference from BET areas was 6%. 

To test the internal consistency of the 
present method, calculations were made on 
a composite isotherm obt,ained by adding 
the isotherms for silica gel UOP and alumina 
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PORE RADIUS, A 

FIG. 2. Cumulative and differential pore distributions for silica gel B.J.H. (ref. 2). 

TABLE 1 
SURFACE AREAS FROM Eo. (9) AND THE 

BET EQUATION 

eurfaee area 
8. 
kc 

W/o) 

‘“.‘iF 
Thiv 

Sample W%l BET 
Pap-7 
&. (9) 

(BJH 425 858 806 
Silica gel { UOP 590 353 371 

[ Aerogel 1300 914 820 
Porous glass 7 136 255 247 
Alumina H-151 240 236 254 
Houdry SiOz-A1,03 285 288 300 

as given in Fig. 1. For the composite iso- 
therm, if terms in Eq. 9 calculated by the 

iterative procedure (i.e., those terms related 
to the decrease in thickness of multilayers) 
are not essentially correct, the presence of a 
system of large pores may greatly change the 
distribution of smaller pores. The cumulative 
pore distribution curve of the composite 
isotherm in Fig. 4 does not differ significantly 
from the sum of the individual distribution 
curves (from Fig. 3). The differences at pore 
radii larger than 60 A result from using 
intervals that are too wide to account 
properly for small changes in amount ad- 
sorbed at high relative pressures. Surface 
areas calculated from the individual and 
composite isotherms agreed satisfactorily. 
In the folIowing tabmar data, areas of in- 
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FIQ. 3. Cumulative (A) and differential (B) pore distribution curves. 

dividual:isotherms are computed for a value 
of #V, = 1 cc (STP) and I’, = 2 cc (STP) 
for the composite isotherm: 

BET 
Present 
method 

Alumina 0.982 1.056 
Silica gel (UOP) .598 .629 

Total 1.580 1.685 
Composite isotherm 1.625 1.685 

The exact agreement of areas by the present 
method is fortuitous. 

For the composite isotherm the values of 
(G) were determined from Eq. (10) and 
compared with values used in Eq. (8). The 
values of (G) agreed within a few parts 
per thousand, as shown in Table 2, where 
values of (G) are tabulated for intervals 
from V,B = 0 to V>B > V,. In evaluating 
(G) from Eq. (10) the value of t correspond- 
ing to the lower limit of integration was used. 

DISCUSSION 

The present paper describes an improved 



PORE DISTRIBUTIONS FROM DESORPTION ISOTHERMS 55 

FIG. 4. Cumulative lsore distribution for composite isotherm for silica gel (UOP) and alumina 
pared with data from individual isotherms. 

CJ From composite isotherms 
A From individual isotherms 

40 
PORE RAOIUS, A 

TABLE 2 
VALIJES OF (G) COMPARED FOR 

COMPOSITE ISOTHERM 

G G G 

Used 
From Used From 

“i”,“” 
From in 

Eq. (IO) in Eq. (8) Eq. (10) Es. (8) Eq. (10) Eq. (8) 

1.000 
.967 
,932 
.979 
.985 
.983 
,968 
.949 
.940 

1.000 ,913 ,915 ,766 .767 
,968 ,900 ,898 .833 ,834 
,935 ,888 ,890 ,861 ,861 
.981 .849 ,852 .791 ,792 
.985 ,865 .868 .749 .750 
,984 ,845 ,847 .730 .730 
,970 ,788 ,790 ,711 ,709 
,950 ,805 ,806 .660 .655 
,941 ,803 ,803 ,588 ,579 

.494 .480 

method of computing pore distribution 
curves based on the original assumptions of 
BJH (2) and Wheeler (5, 6). These assump- 
tions include : 

(a) Pores are cylindrical in shape and the 
adsorbed phase may be regarded as a con- 
tinuum rather than composed of discrete 
molecules. 

(b) For porous solids, the average thick- 
ness of adsorbed layer, 1, at any given rela- 
tive pressure is the same as observed on 
nonporous solids. 

(c) The Kelvin equation applied to the 
desorption isotherm is valid even for pores 

with radii as small as 2 to 3 molecular 
diameters. 

(d) The density of the adsorbate is that 
of normal liquid. 

In addition two factors that may lead to 
incorrect surface areas and pore distribu- 
tions may be added to the uncertainties 
listed above : 

(e) Roughness of the surface of molecular 
size. 

(f) Bottleneck pores that desorb at a 
lower value of R than the average radius 
of the pore. 

In the present procedure the cummula- 
tive pore distribution curve is stopped at a 
value of R where V >R = V,, and the exten- 
sion of this curve to smaller values of R is 
attributed to multilayer adsorption. If the 
basic assumptions are incorrect, the cum- 
mulative curve may be terminated at an 
incorrect point and the portion of the 
distribution for small values of R may be 
eliminated or included incorrectly. 

The present numerical method is more 
accurate than the approximate procedures 
of BJH (2) and Wheeler (B), and the calcu- 
lating time is no greater. The present calcula- 
tions can be made as exact as required by 
decreasing the size of the intervals of V,. 
The present calculations were made with a 
desk calculator; however, the procedure 
could be readily adapted to modern com- 



56 R. B. ANDERSON 

puters, using polynomial approximations 
for R and t as a function of x. The quantity 
(R - t’) in the integrals of Eq. (6) could be 
evaluated exactly, and higher terms in the 
series of Eq. (8) could be computed. 

Possibly improved values of Kelvin radii 
could be obtained, especially as applied to 
pores approaching molecular dimensions. 
These investigations could, however, be 
supported only by the internal consistency 
of the data, as there is no unequivocal 
method of determining surface area of porous 
solids. Part of the pore volume curve can 
be checked by mercury porosimeter data, 
and good agreement was obtained by Joyner, 
Barrett, and Skold (4) for the common 
portions of pore distribution curves, if a 
contact angle of 130” was used for mercury 
in the Washburn equation. 
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